GENE THERAPY Improved muscle-derived expression of human coagulation factor IX from a skeletal actin/CMV hybrid enhancer/promoter
نویسندگان
چکیده
Hemophilia B is caused by the absence of functional coagulation factor IX (F.IX) and represents an important model for treatment of genetic diseases by gene therapy. Recent studies have shown that intramuscular injection of an adeno-associated viral (AAV) vector into mice and hemophilia B dogs results in vector dose– dependent, long-term expression of biologically active F.IX at therapeutic levels. In this study, we demonstrate that levels of expression of approximately 300 ng/mL (6% of normal human F.IX levels) can be reached by intramuscular injection of mice using a 2to 4-fold lower vector dose (1 3 1011 vector genomes/mouse, injected into 4 intramuscular sites) than previously described. This was accomplished through the use of an improved expression cassette that uses the cytomegalovirus (CMV) immediate early enhancer/promoter in combination with a 1.2-kilobase portion of human skeletal actin promoter. These results correlated with enhanced levels of F.IX transcript and secreted F.IX protein in transduced murine C2C12 myotubes. Systemic F.IX expression from constructs containing the CMV enhancer/promoter alone was 120 to 200 ng/mL in mice injected with 1 3 1011 vector genomes. Muscle-specific promoters performed poorly for F.IX transgene expression in vitro and in vivo. However, the incorporation of a sequence from the a-skeletal actin promoter containing at least 1 muscle-specific enhancer and 1 enhancer-like element further improved muscle-derived expression of F.IX from a CMV enhancer/promoterdriven expression cassette over previously published results. These findings will allow the design of a clinical protocol for therapeutic levels of F.IX expression with lower vector doses, thus enhancing efficacy and safety of the protocol. (Blood. 2000;95:2536-2542)
منابع مشابه
Improved muscle-derived expression of human coagulation factor IX from a skeletal actin/CMV hybrid enhancer/promoter.
Hemophilia B is caused by the absence of functional coagulation factor IX (F.IX) and represents an important model for treatment of genetic diseases by gene therapy. Recent studies have shown that intramuscular injection of an adeno-associated viral (AAV) vector into mice and hemophilia B dogs results in vector dose-dependent, long-term expression of biologically active F.IX at therapeutic leve...
متن کاملExpression of Recombinant Coagulation Factor IX in Human Amniotic Membrane-derived Mesenchymal Stem Cells: A New Strategy to Gene Therapy of Hemophilia B
Background: Hemophilia B is an X-linked hereditary disorder of blood coagulation system which is caused by factor IX (FIX) deficiency. Factor IX is a plasma glycoprotein that participates in the coagulation process leading to the generation of fibrin. Replacement of factor IX with plasma-derived or recombinant factor IX is the conventional treatment for hemophilia B to raise the factor IX le...
متن کاملCMV-b-Actin Promoter Directs Higher Expression from an Adeno-Associated Viral Vector in the Liver than the Cytomegalovirus or Elongation Factor 1a Promoter and Results in Therapeutic Levels of Human Factor X in Mice
Although AAV vectors show promise for hepatic gene therapy, the optimal transcriptional regulatory elements have not yet been identified. In this study, we show that an AAV vector with the CMV enhancer/chicken b -actin promoter results in 9.5-fold higher expression after portal vein injection than an AAV vector with the EF1a promoter, and 137-fold higher expression than an AAV vector with the C...
متن کاملFunctions of the Heterologous Intron-Derived Fragments Intra and Extra Factor IX-cDNA Coding Region on the Human Factor IX Expression in HepG2 and Hek-293T Cells
Background: Human FIX (hFIX) gene transfer into hepatocytes has provided a novel approach for treatment of hemophilia B. To obtain an improved expression of hFIX, the functional hFIX-expressing plasmids with appropriate intron-derived fragments which facilitate transcription and promote an efficient 3′-end formation of mRNAs are required.Objectives: We ai...
متن کاملFactors influencing in vivo transduction by recombinant adeno-associated viral vectors expressing the human factor IX cDNA.
Long-term expression of coagulation factor IX (FIX) has been observed in murine and canine models following administration of recombinant adeno-associated viral (rAAV) vectors into either the portal vein or muscle. These studies were designed to evaluate factors that influence rAAV-mediated FIX expression. Stable and persistent human FIX (hFIX) expression (> 22 weeks) was observed from 4 vector...
متن کامل